
Status and next steps

Presented at the Trino Contributor Congregation in June 2024

What is Trino Gateway?

Trino Gateway is a load balancer, proxy server, and configurable routing gateway
for multiple Trino clusters.

More at https://trinodb.github.io/trino-gateway/

https://trinodb.github.io/trino-gateway/

Project overview

● Evolved from lyft/presto-gateway
● Contributed by Bloomberg, and indirectly Lyft in July 2023
● Presented at Trino Summit 2023
● Project lead Manfred Moser
● Subproject maintainers Jaeho Yoo, Will Morrison, and Vishal Jadhav
● Contributions from Yuya Ebihara, Star Poon, Andy Tsu, and many others
● Public developer sync every two weeks
● Approx. 300 commits of varying size
● Seven releases so far

https://trino.io/blog/2023/12/18/trino-summit-recap

Significant improvements

● Huge code, Java version, and dependency upgrades to Trino standards
● Adoption of Airbase and Airlift and removal of Dropwizard
● Access control, authentication, and other security improvements
● New web-based user interface
● New router modules
● New Docker container
● New Helm chart
● New documentation website

Immediate next steps

● Complete the refactor from Dropwizard to Airlift
● Improve configuration to align more with Trino
● Test and polish user interface
● Improve Helm chart and overall deployment experience
● Add more documentation for different use cases
● Establish regular release cadence
● Improve Trino cluster health check logic
● Add support for observability with OpenTelemetry and JMX

Long terms ideas - single pane of glass

A collection of potential improvements and existing plans:

● Fully support as cluster of stateless nodes
● Expand user interface with more data and insights
● More router modules including based on query cost estimate, programmable logic,

query shape, and used catalogs
● Add support for dynamic catalog storage in database and use for multiple clusters
● Add UI for access control CRUD operations (routing rules)??/
● Test and improve performance, potentially including other backend database
● Add caching layer for metadata, result sets, and other aspects
● Add SPI and user interface for pluggable Trino cluster management tasks like

scaling up and down, adding catalogs, and more

Discussion topics

● Add and use Trino API endpoint with worker and running query count without
authentication

○ Currently using unofficial endpoint from UI with authentication
● Approaches for shared libraries and concerns

○ Authentication layer
○ Authorization layer
○ Resource groups (already exists, for better or worse)
○ Planner and cost estimation
○ Caching
○ Reuse some coordinator code and workload

● Overlap and impact from Trino connector (cross cluster joins)

Final words

We have come a long way already, …
 but there is an even longer road ahead.

Are you ready to help us and participate?

