Iceberg connector#

Overview#

Apache Iceberg is an open table format for huge analytic datasets. The Iceberg connector allows querying data stored in files written in Iceberg format, as defined in the Iceberg Table Spec. It supports Apache Iceberg table spec version 1.

The Iceberg table state is maintained in metadata files. All changes to table state create a new metadata file and replace the old metadata with an atomic swap. The table metadata file tracks the table schema, partitioning config, custom properties, and snapshots of the table contents.

Iceberg data files can be stored in either Parquet or ORC format, as determined by the format property in the table definition. The table format defaults to ORC.

Iceberg is designed to improve on the known scalability limitations of Hive, which stores table metadata in a metastore that is backed by a relational database such as MySQL. It tracks partition locations in the metastore, but not individual data files. Trino queries using the Hive connector must first call the metastore to get partition locations, then call the underlying filesystem to list all data files inside each partition, and then read metadata from each data file.

Since Iceberg stores the paths to data files in the metadata files, it only consults the underlying file system for files that must be read.

Requirements#

To use Iceberg, you need:

  • Network access from the Trino coordinator and workers to the distributed object storage.

  • Access to a Hive metastore service (HMS).

  • Network access from the Trino coordinator to the HMS. Hive metastore access with the Thrift protocol defaults to using port 9083.

Configuration#

Iceberg supports the same metastore configuration properties as the Hive connector. At a minimum, hive.metastore.uri must be configured:

connector.name=iceberg
hive.metastore.uri=thrift://localhost:9083
Iceberg configuration properties#

Property name

Description

Default

iceberg.file-format

Define the data storage file format for Iceberg tables. Possible values are

  • PARQUET

  • ORC

ORC

iceberg.compression-codec

The compression codec to be used when writing files. Possible values are

  • NONE

  • SNAPPY

  • LZ4

  • ZSTD

  • GZIP

ZSTD

iceberg.max-partitions-per-writer

Maximum number of partitions handled per writer.

100

Authorization checks#

You can enable authorization checks for the connector by setting the iceberg.security property in the catalog properties file. This property must be one of the following values:

Iceberg security values#

Property value

Description

ALLOW_ALL

No authorization checks are enforced.

SYSTEM

The connector relies on system-level access control.

READ_ONLY

Operations that read data or metadata, such as SELECT are permitted. No operations that write data or metadata, such as CREATE TABLE, INSERT, or DELETE are allowed.

FILE

Authorization checks are enforced using a catalog-level access control configuration file whose path is specified in the security.config-file catalog configuration property. See Catalog-level access control files for information on the authorzation configuration file.

SQL support#

This connector provides read access and write access to data and metadata in Iceberg. In addition to the globally available and read operation statements, the connector supports the following features:

ALTER MATERIALIZED VIEW SET PROPERTIES#

The connector does not support ALTER MATERIALIZED VIEW SET PROPERTIES statements.

Type mapping#

Both Iceberg and Trino have types that are not supported by the Iceberg connector. The following sections explain their type mapping.

Iceberg to Trino type mapping#

Trino supports selecting Iceberg data types. The following table shows the Iceberg to Trino type mapping:

Iceberg to Trino type mapping#

Iceberg type

Trino type

BOOLEAN

BOOLEAN

INT

INTEGER

LONG

BIGINT

FLOAT

REAL

DOUBLE

DOUBLE

DECIMAL(p,s)

DECIMAL(p,s)

DATE

DATE

TIME

TIME(6)

TIMESTAMP

TIMESTAMP(6)

TIMESTAMPTZ

TIMESTAMP(6) WITH TIME ZONE

STRING

VARCHAR

UUID

UUID

BINARY

VARBINARY

STRUCT(...)

ROW(...)

LIST(e)

ARRAY(e)

MAP(k,v)

MAP(k,v)

Trino to Iceberg type mapping#

Trino supports creating tables with the following types in Iceberg. The table shows the mappings from Trino to Iceberg data types:

Trino to Iceberg type mapping#

Trino type

Iceberg type

Notes

BOOLEAN

BOOLEAN

INTEGER

INT

BIGINT

LONG

REAL

FLOAT

DOUBLE

DOUBLE

DECIMAL(p,s)

DECIMAL(p,s)

DATE

DATE

TIME(6)

TIME

Other precisions not supported

TIMESTAMP(6)

TIMESTAMP

Other precisions not supported

TIMESTAMP(6) WITH TIME ZONE

TIMESTAMPTZ

Other precisions not supported

VARCHAR, VARCHAR(n)

STRING

UUID

UUID

VARBINARY

BINARY

ROW(...)

STRUCT(...)

All fields must have a name

ARRAY(e)

LIST(e)

MAP(k,v)

MAP(k,v)

Partitioned tables#

Iceberg supports partitioning by specifying transforms over the table columns. A partition is created for each unique tuple value produced by the transforms. Identity transforms are simply the column name. Other transforms are:

Transform

Description

year(ts)

A partition is created for each year. The partition value is the integer difference in years between ts and January 1 1970.

month(ts)

A partition is created for each month of each year. The partition value is the integer difference in months between ts and January 1 1970.

day(ts)

A partition is created for each day of each year. The partition value is the integer difference in days between ts and January 1 1970.

hour(ts)

A partition is created hour of each day. The partition value is a timestamp with the minutes and seconds set to zero.

bucket(x, nbuckets)

The data is hashed into the specified number of buckets. The partition value is an integer hash of x, with a value between 0 and nbuckets - 1 inclusive.

truncate(s, nchars)

The partition value is the first nchars characters of s.

In this example, the table is partitioned by the month of order_date, a hash of account_number (with 10 buckets), and country:

CREATE TABLE iceberg.testdb.customer_orders (
    order_id BIGINT,
    order_date DATE,
    account_number BIGINT,
    customer VARCHAR,
    country VARCHAR)
WITH (partitioning = ARRAY['month(order_date)', 'bucket(account_number, 10)', 'country'])

Deletion by partition#

For partitioned tables, the Iceberg connector supports the deletion of entire partitions if the WHERE clause specifies filters only on the identity-transformed partitioning columns, that can match entire partitions. Given the table definition above, this SQL will delete all partitions for which country is US:

DELETE FROM iceberg.testdb.customer_orders
WHERE country = 'US'

Currently, the Iceberg connector only supports deletion by partition. This SQL below will fail because the WHERE clause selects only some of the rows in the partition:

DELETE FROM iceberg.testdb.customer_orders
WHERE country = 'US' AND customer = 'Freds Foods'

Rolling back to a previous snapshot#

Iceberg supports a “snapshot” model of data, where table snapshots are identified by an snapshot IDs.

The connector provides a system snapshots table for each Iceberg table. Snapshots are identified by BIGINT snapshot IDs. You can find the latest snapshot ID for table customer_orders by running the following command:

SELECT snapshot_id FROM iceberg.testdb."customer_orders$snapshots" ORDER BY committed_at DESC LIMIT 1

A SQL procedure system.rollback_to_snapshot allows the caller to roll back the state of the table to a previous snapshot id:

CALL iceberg.system.rollback_to_snapshot('testdb', 'customer_orders', 8954597067493422955)

Schema evolution#

Iceberg and the Iceberg connector support schema evolution, with safe column add, drop, reorder and rename operations, including in nested structures. Table partitioning can also be changed and the connector can still query data created before the partitioning change.

Migrating existing tables#

The connector can read from or write to Hive tables that have been migrated to Iceberg. There is no Trino support for migrating Hive tables to Iceberg, so you need to either use the Iceberg API or Apache Spark.

System tables and columns#

The connector supports queries of the table partitions. Given a table customer_orders, SELECT * FROM iceberg.testdb."customer_orders$partitions" shows the table partitions, including the minimum and maximum values for the partition columns.

Iceberg table properties#

Property Name

Description

format

Optionally specifies the format of table data files; either PARQUET or ORC. Defaults to ORC.

partitioning

Optionally specifies table partitioning. If a table is partitioned by columns c1 and c2, the partitioning property would be partitioning = ARRAY['c1', 'c2']

location

Optionally specifies the file system location URI for the table.

The table definition below specifies format Parquet, partitioning by columns c1 and c2, and a file system location of /var/my_tables/test_table:

CREATE TABLE test_table (
    c1 integer,
    c2 date,
    c3 double)
WITH (
    format = 'PARQUET',
    partitioning = ARRAY['c1', 'c2'],
    location = '/var/my_tables/test_table')

Metadata tables#

The connector exposes several metadata tables for each Iceberg table. These metadata tables contain information about the internal structure of the Iceberg table. You can query each metadata table by appending the metadata table name to the table name:

SELECT * FROM "test_table$data"

$data table#

The $data table is an alias for the Iceberg table itself.

The statement:

SELECT * FROM "test_table$data"

is equivalent to:

SELECT * FROM test_table

$properties table#

The $properties table provides access to general information about Iceberg table configuration and any additional metadata key/value pairs that the table is tagged with.

You can retrieve the properties of the current snapshot of the Iceberg table test_table by using the following query:

SELECT * FROM "test_table$properties"
 key                   | value    |
-----------------------+----------+
write.format.default   | PARQUET  |
format-version         | 2        |

$history table#

The $history table provides a log of the metadata changes performed on the Iceberg table.

You can retrieve the changelog of the Iceberg table test_table by using the following query:

SELECT * FROM "test_table$history"
 made_current_at                  | snapshot_id          | parent_id            | is_current_ancestor
----------------------------------+----------------------+----------------------+--------------------
2022-01-10 08:11:20 Europe/Vienna | 8667764846443717831  |  <null>              |  true
2022-01-10 08:11:34 Europe/Vienna | 7860805980949777961  | 8667764846443717831  |  true

The output of the query has the following columns:

History columns#

Name

Type

Description

made_current_at

timestamp(3) with time zone

The time when the snapshot became active

snapshot_id

bigint

The identifier of the snapshot

parent_id

bigint

The identifier of the parent snapshot

is_current_ancestor

boolean

Whether or not this snapshot is an ancestor of the current snapshot

$snapshots table#

The $snapshots table provides a detailed view of snapshots of the Iceberg table. A snapshot consists of one or more file manifests, and the complete table contents is represented by the union of all the data files in those manifests.

You can retrieve the information about the snapshots of the Iceberg table test_table by using the following query:

SELECT * FROM "test_table$snapshots"
 committed_at                      | snapshot_id          | parent_id            | operation          |  manifest_list                                                                                                                           |   summary
----------------------------------+----------------------+----------------------+--------------------+------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2022-01-10 08:11:20 Europe/Vienna | 8667764846443717831  |  <null>              |  append            |   hdfs://hadoop-master:9000/user/hive/warehouse/test_table/metadata/snap-8667764846443717831-1-100cf97e-6d56-446e-8961-afdaded63bc4.avro | {changed-partition-count=0, total-equality-deletes=0, total-position-deletes=0, total-delete-files=0, total-files-size=0, total-records=0, total-data-files=0}
2022-01-10 08:11:34 Europe/Vienna | 7860805980949777961  | 8667764846443717831  |  append            |   hdfs://hadoop-master:9000/user/hive/warehouse/test_table/metadata/snap-7860805980949777961-1-faa19903-1455-4bb8-855a-61a1bbafbaa7.avro | {changed-partition-count=1, added-data-files=1, total-equality-deletes=0, added-records=1, total-position-deletes=0, added-files-size=442, total-delete-files=0, total-files-size=442, total-records=1, total-data-files=1}

The output of the query has the following columns:

Snapshots columns#

Name

Type

Description

committed_at

timestamp(3) with time zone

The time when the snapshot became active

snapshot_id

bigint

The identifier for the snapshot

parent_id

bigint

The identifier for the parent snapshot

operation

varchar

The type of operation performed on the Iceberg table. The supported operation types in Iceberg are:

  • append when new data is appended

  • replace when files are removed and replaced without changing the data in the table

  • overwrite when new data is added to overwrite existing data

  • delete when data is deleted from the table and no new data is added

manifest_list

varchar

The list of avro manifest files containing the detailed information about the snapshot changes.

summary

map(varchar, varchar)

A summary of the changes made from the previous snapshot to the current snapshot

$manifests table#

The $manifests table provides a detailed overview of the manifests corresponding to the snapshots performed in the log of the Iceberg table.

You can retrieve the information about the manifests of the Iceberg table test_table by using the following query:

SELECT * FROM "test_table$manifests"
 path                                                                                                           | length          | partition_spec_id    | added_snapshot_id     |  added_data_files_count  | existing_data_files_count   | deleted_data_files_count    | partitions
----------------------------------------------------------------------------------------------------------------+-----------------+----------------------+-----------------------+--------------------------+-----------------------------+-----------------------------+----------------------------------------------------------------------------------------------------------------------------
 hdfs://hadoop-master:9000/user/hive/warehouse/test_table/metadata/faa19903-1455-4bb8-855a-61a1bbafbaa7-m0.avro |  6277           |   0                  | 7860805980949777961   |  1                       |   0                         |  0                          |{{contains_null=false, lower_bound=1, upper_bound=1},{contains_null=false, lower_bound=2021-01-12, upper_bound=2021-01-12}}

The output of the query has the following columns:

Manifests columns#

Name

Type

Description

path

varchar

The manifest file location

length

bigint

The manifest file length

partition_spec_id

integer

The identifier for the partition specification used to write the manifest file

added_snapshot_id

bigint

The identifier of the snapshot during which this manifest entry has been added

added_data_files_count

integer

The number of data files with status ADDED in the manifest file

existing_data_files_count

integer

The number of data files with status EXISTING in the manifest file

deleted_data_files_count

integer

The number of data files with status DELETED in the manifest file

partitions

array(row(contains_null boolean, lower_bound varchar, upper_bound varchar))

Partition range metadata

$partitions table#

The $partitions table provides a detailed overview of the partitions of the Iceberg table.

You can retrieve the information about the partitions of the Iceberg table test_table by using the following query:

SELECT * FROM "test_table$partitions"
 partition             | record_count  | file_count    | total_size    |  data
-----------------------+---------------+---------------+---------------+--------------------------------------
{c1=1, c2=2021-01-12}  |  2            | 2             |  884          | {c3={min=1.0, max=2.0, null_count=0}}
{c1=1, c2=2021-01-13}  |  1            | 1             |  442          | {c3={min=1.0, max=1.0, null_count=0}}

The output of the query has the following columns:

Partitions columns#

Name

Type

Description

partition

row(...)

A row which contains the mapping of the partition column name(s) to the partition column value(s)

record_count

bigint

The number of records in the partition

file_count

bigint

The number of files mapped in the partition

total_size

bigint

The size of all the files in the partition

data

row(... row (min ..., max ... , null_count bigint))

Partition range metadata

$files table#

The $files table provides a detailed overview of the data files in current snapshot of the Iceberg table.

To retrieve the information about the data files of the Iceberg table test_table use the following query:

SELECT * FROM "test_table$files"
 content  | file_path                                                                                                                     | record_count    | file_format   | file_size_in_bytes   |  column_sizes        |  value_counts     |  null_value_counts | nan_value_counts  | lower_bounds                |  upper_bounds               |  key_metadata  | split_offsets  |  equality_ids
----------+-------------------------------------------------------------------------------------------------------------------------------+-----------------+---------------+----------------------+----------------------+-------------------+--------------------+-------------------+-----------------------------+-----------------------------+----------------+----------------+---------------
 0        | hdfs://hadoop-master:9000/user/hive/warehouse/test_table/data/c1=3/c2=2021-01-14/af9872b2-40f3-428f-9c87-186d2750d84e.parquet |  1              |  PARQUET      |  442                 | {1=40, 2=40, 3=44}   |  {1=1, 2=1, 3=1}  |  {1=0, 2=0, 3=0}   | <null>            |  {1=3, 2=2021-01-14, 3=1.3} |  {1=3, 2=2021-01-14, 3=1.3} |  <null>        | <null>         |   <null>

The output of the query has the following columns:

Files columns#

Name

Type

Description

content

integer

Type of content stored in the file. The supported content types in Iceberg are:

  • DATA(0)

  • POSITION_DELETES(1)

  • EQUALITY_DELETES(2)

file_path

varchar

The data file location

file_format

varchar

The format of the data file

record_count

bigint

The number of entries contained in the data file

file_size_in_bytes

bigint

The data file size

column_sizes

map(integer, bigint)

Mapping between the Iceberg column ID and its corresponding size in the file

value_counts

map(integer, bigint)

Mapping between the Iceberg column ID and its corresponding count of entries in the file

null_value_counts

map(integer, bigint)

Mapping between the Iceberg column ID and its corresponding count of NULL values in the file

nan_value_counts

map(integer, bigint)

Mapping between the Iceberg column ID and its corresponding count of non numerical values in the file

lower_bounds

map(integer, bigint)

Mapping between the Iceberg column ID and its corresponding lower bound in the file

upper_bounds

map(integer, bigint)

Mapping between the Iceberg column ID and its corresponding upper bound in the file

key_metadata

varbinary

Metadata about the encryption key used to encrypt this file, if applicable

split_offsets

array(bigint)

List of recommended split locations

equality_ids

array(integer)

The set of field IDs used for equality comparison in equality delete files

Materialized views#

The Iceberg connector supports Materialized views management. In the underlying system each materialized view consists of a view definition and an Iceberg storage table. The storage table name is stored as a materialized view property. The data is stored in that storage table.

You can use the Iceberg table properties to control the created storage table and therefore the layout and performance. For example, you can use the following clause with CREATE MATERIALIZED VIEW to use the ORC format for the data files and partition the storage per day using the column _date:

WITH ( format = 'ORC', partitioning = ARRAY['event_date'] )

Updating the data in the materialized view with REFRESH MATERIALIZED VIEW deletes the data from the storage table, and inserts the data that is the result of executing the materialized view query into the existing table.

Warning

There is a small time window between the commit of the delete and insert, when the materialized view is empty. If the commit operation for the insert fails, the materialized view remains empty.

Dropping a materialized view with DROP MATERIALIZED VIEW removes the definition and the storage table.